

AfricaYam II: Progress report and work plan at CIRAD

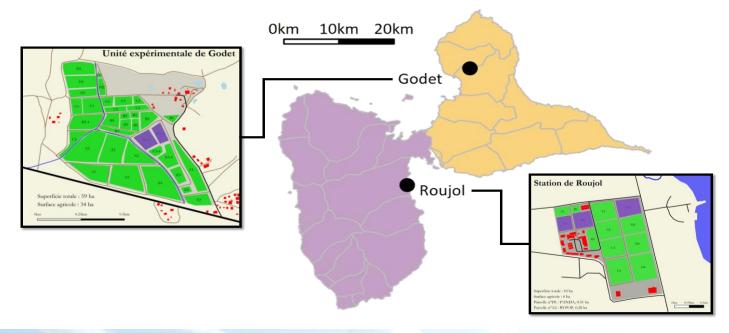
Denis Cornet , Komivi Dossa, Ezékiel Houngbo, Gemma Arnau, Hana Chair

TARGET OUTCOMES AND DELIVRABLES

FP1

- Develop and transfer medium or high throughput method for morphological quality traits
- Organize and attend the joint training on methodologies for sensory evaluation, textural determination and food quality assessment developed by RTBfoods

FP2


 Identify QTLs and genes controlling key traits regarding competitiveness against weeds

Develop M/HTPP • Field: Divers

• Field: Diversity panel reconducted at 2 pedoclimaticaly contrasted sites in Guadeloupe (Roujol and Godet)

0.75 **-** 0.50 **-**

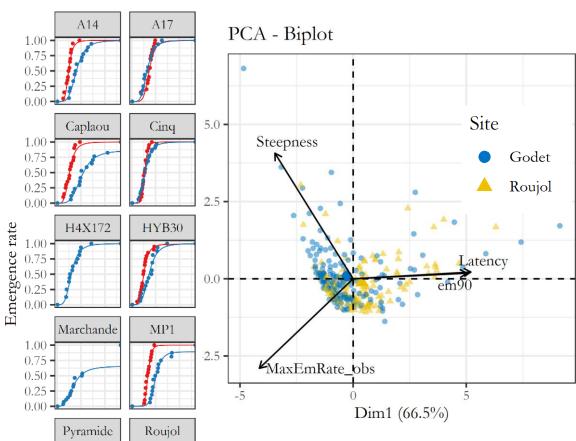
0.25

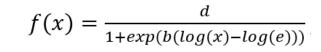
50 100 0 50 100

Develop M/HTPP

Phenotyping: Characterization of emergence dynamic

Phenotyped leaf traits:

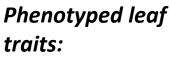

Steepness Emergence duration Emergence rate


Genotypes:

D. alata diversity panel (50 acc.)

Site: Godet and Roujol

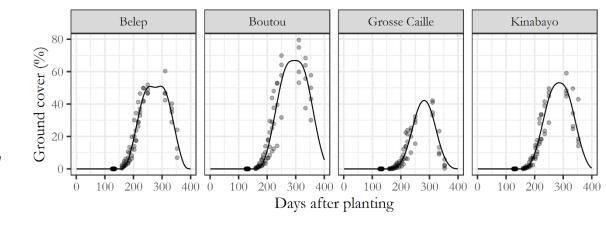
1200 plants followed every 3 days



Develop M/HTPP

Phenotyping: Characterization of ground cover dynamic

Maximum ground cover
Ground cover speed
Senescence duration


Genotypes:

D. alata diversity panel (50 acc.)

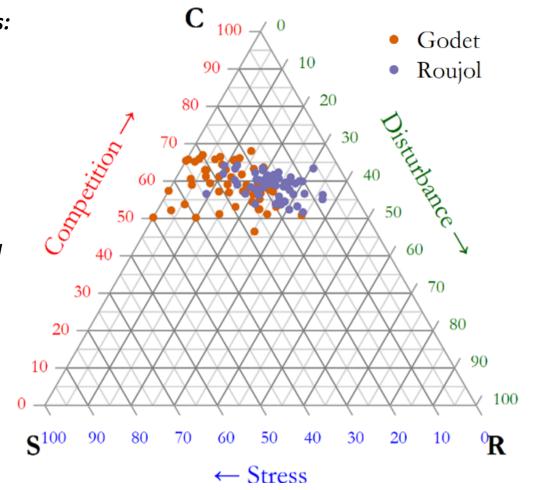
Site: Godet and Roujol

12000 pics acquired

$$w = w_{max} (1 + \frac{t_e - t}{t_e - t_m}) (\frac{t}{t_e})^{\frac{t_e}{t_e - t_m}} \text{ with } 0 \le t_m < t_e$$

Phenotyping: Characterization of ecological strategy

Phenotyped leaf traits: specific leaf area, chlorophyll content, leaf thickness, leaf

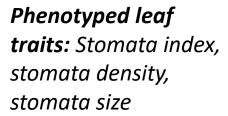

area, leaf dry matter content

Genotypes:

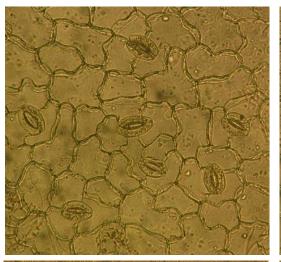
D. alata diversity panel (50 acc.)

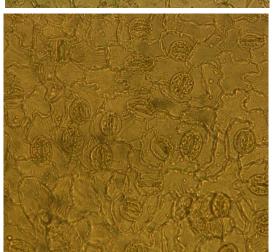
Site: Godet and Roujol

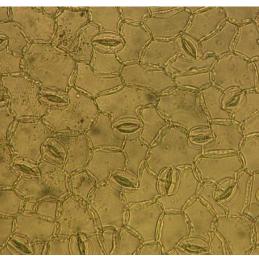
>2000 leaves phenotyped

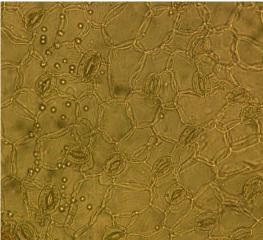


Phenotyping: Characterization of leaf stomata


Genotypes:


D. alata diversity panel (50 acc.)


Site:


Godet and Roujol

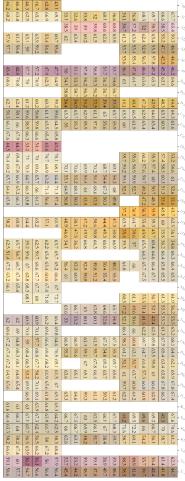
>9000 pics acquired

Develop M/HTPP

Phenotyping: Characterization tuber color and oxidation

Phenotyped traits: color indices, color indices spatial variability, color indices temporal variability

Genotypes:


D. alata diversity panel (50 acc.)

Site:

Godet and Roujol

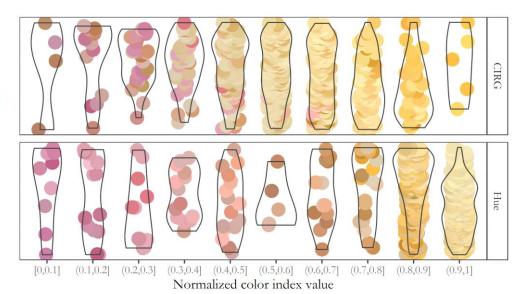
>3000 pics acquired

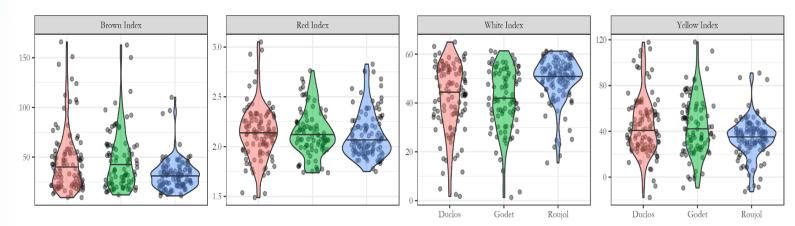
Whiteness
$$Index = \sqrt{(100 - L^{*2} + a^{*2} + b^{*2})}$$
 (Rhim et al. 1999)

$$Yellowness\ Index = \frac{142.86\ b^*}{L^*}$$
 (Francis and Clydesdale 1975)

Browness
$$Index = [100(x - 0.31)]/0.172$$
 (Buera et al., 1986)

Color Index for Red Grape $=\frac{180-Hue}{L^*+Chroma}$ (Carreno et al. 1995)





Develop M/HTPP

Phenotyping: Characterization tuber color and oxidation

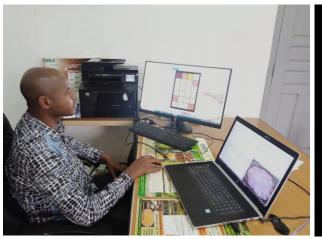
Purpleness index CIRG -> Hue

Phenotyping: Characterization of pounded yam mouldability, cooking time, peeling yield

Develop M/HTPP

Phenotyping: External validation for NIRS model predicting starch, soluble sugar and protein content (RTBfoods)

			Calibration						
Constituent	N _{total}	SEL	N_{calib}	Outlier	Noise	Mean	SD	SEC	R ²
Protein	1032	0,069	784	0	5	5,244	0,997	0,093	0,991
Sugar	1032	0,077	784	0	3	3,335	2,23	0,135	0,997
Starch	1032	0,541	784	0	3	78,903	3,809	0,505	0,982
			External Validation						
Constituent	N _{total}	SEL	N_{valid}	Outlier	Mean	SD	SEP	R ²	RPD
Protein	1032	0,069	248	0	6,77	1,205	0,753	0,61	1,324
Sugar	1032	0,077	248	0	3,798	2,659	0,984	0,862	2,2663
Starch	1032	0,541	248	0	77,156	3,854	1,858	0,767	2,0501



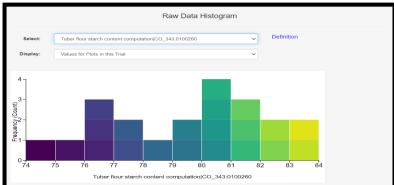
- Capacity building with CNRA
 - Hosting of Dr Dibi (Oct. Nov. 2021 in Montpellier)
 - Training session in Cotonou
 - Support mission in Cl

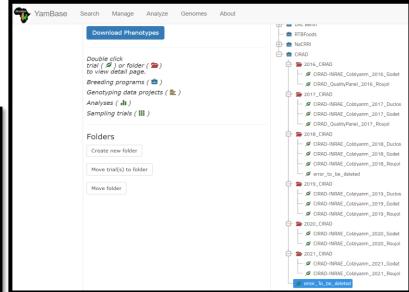
G	12	18	24
RGB (55,28,38)	RGB (117.92.76	RGB (184,198,49)	RGB (255,255,258)
XYZ (0022-022-022	XYZ (0.33), 12.009	SYZ (92,021,006)	XYZ (0,95,1,1,09)
Lab (14,15,-1)	Lab (41.9.12)	Lob (53,25,45)	Lab (100,00)
5	11	17	23
RGB (187,156,189)	RGB (195,196,195,	RGB (222,289,192)	868 (1905;71)
NYZ,0442,038,0.5%	XYZ (0.52,0.55,0.59)	NYZ (042,045,0-39)	872 (0.16,0.17)07)
Lab (68,17,13)	Lab (79,1,0)	Lab (84,2.10)	1ab (39,36.14)
4	10	16	22
RGB (201,163,138)	RGB (200,203,208;	RGB (239,174,127)	RGB (194,205,195)
XYZ (6: 22,84,83)	XYZ (0.57,0,6,0.68;	XYZ (0.55,0.5,9.27)	XYZ 3054B,6,06)
1.26 (70,10,18)	Lab (82,0.3)	Lab (76,18,33)	Lab (82,-6,4)
3 RGB (198,197,187) NYZ (052,035,035) Lab (79,-1,5)	9 RGB (153,97,136) XYZ,91,220,117,825) Lub (48,29,-12)	15 RGB (212217,199) XYZ (048,0,71,0,64) Lab (87,2,11)	21 SVZ (0.22,022,039) Sab (54,11,33)
2	8	14	20
NYZ 100273-00	RGB (203,198,179)	RGB (211,154,110)	RGB (153,162,94)
NYZ 1008-007-000	XYZ (0.53),56,0.51)	XYZ (0.41,0.18,0.2)	XYZ (0.37,0.38,0.16)
140-0336-11)	Lab (80,-2,10)	Lab (0.8,16,31)	Lab (88,3,39)
1	7	13	19
RGB (200,200,115)	RGB (189,190,190;	RGB (NC, 196, 188)	8GB (141,54,53)
NYZ (0.5,0.56,0.24)	XYZ (9.49,051,035)	NYZ (0.54,0.56,0.56)	8YZ (0.13,000,000)
Lab (80, 9.43)	Lab (77,0.0)	Lab (80,2,5)	Laft (36,37,00)

Publications:

Accepted Paper – Acta Horticulturae. Identification and validation of QTLs for tuber quality related traits in yam *Dioscorea alata* L. G. Arnau, A. E. Ehounou, E. Maledon, E Nudol, H. Vignes, M. C. Gravillon, A. S. P. N'guetta, P. Mournet, A. M. Kouakou, H. Chaïr, F. Cormier

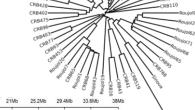
4 paper to be submitted to JSFA





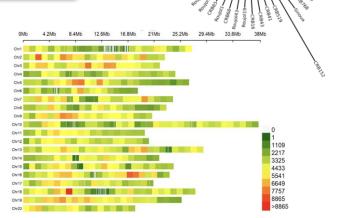
Transfer M/HTPP

- Yam ontology traits
 - Validated: color indices, emergence dynmic related traits
 - Ongoing: textural trait using NIRS (springiness, moldability...)
- Yambase:
 - Trials from 2016 up to 2018 were added
 - Tuber composition
 - NIRS bug


GWAS for nine leaf traits in *D. alata*

Phenotyping at two locations:

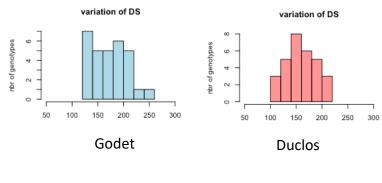
- High variability for leaf traits
- Moderate to high heritability for leaf traits
- Correlations between leaf traits highlighted

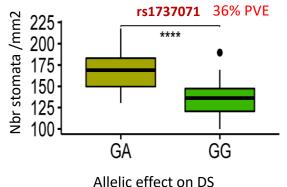

Traits		Min	Max	Mean	V	CV	H ²
LDMC	Leaf dry mater content	0.1	0.27	0.18	0.00136	20.43	0.58
LA1	Leaf area	7.32	85.67	32.37	288.21	52.44	0.92
А	Net photosynthetic rate	0.95	23.33	12.65	19.63	35.04	0.81
E	Transpiration	0.48	4.45	2.66	0.6	29	0.94
TUE	Transpiration use efficiency	0.38	9.15	4.83	1.81	27.82	0.76
IS	Stomatal index	8.89	37.14	22.74	23.22	21.19	0.77
DS	Stomatal density	50.44	353.1	170.69	3366.38	33.99	0.87
NN	Node number	3	15	9.42	6.07	26.16	0.74
LT	Leaf thickness	0.2	0.6	0.36	0.00576	20.8	0.72

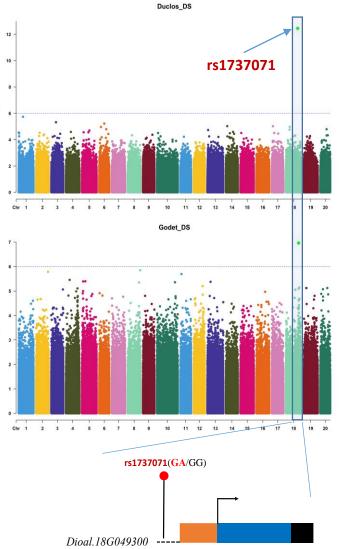
		_							1
Α									- 0.8
0.50	Е								- 0.6
0.43	-0.53	TUE							- 0.4
	0.23	-0.25	LA1						- 0.2
	-0.14	0.08	-0.10	LDMC					- 0
0.12	-0.13	0.30	0.09	-0.23	DS			•	0.2
-0.12	-0.02	-0.09	-0.15	-0.20	0.24	IS			0.4
0.24	0.40	-0.18	0.27	0.00	0.12	0.10	NN	•	0.6
-0.43	-0.15	-0.22	0.40	-0.28	-0.02	0.44	0.11	LT	0.8
									-1

Whole genome sequencing of the panel:

- 1.9 M SNPs
- High SNP density
- Weak population structure






GWAS for nine leaf traits

- 18 associations detected
- Stable QTNs identified for 2 traits
- Favorable alleles at peak SNPs identified
- 33 candidate genes identified

Example of GWAS for stomatal density (DS)

Very-long-chain 3-ketoacyl-CoA synthase (KCS)

Homolog of hic in Arabidopsis (Gary et al. 2000) DOI:10.1038/35047071

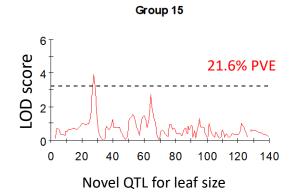
QTL linkage mapping for leaf traits

Phenotyping of a bi-parental population of *D. alata* at Roujol (2 years)

- Leaf chlorophyll
- Leaf size
- Stomata traits
- Petiole length

74F

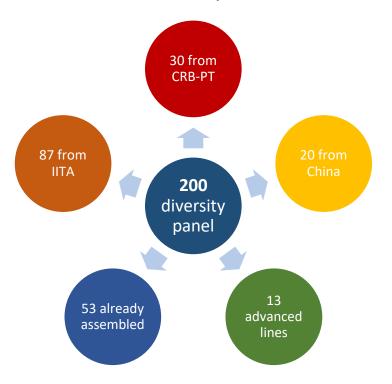
Χ

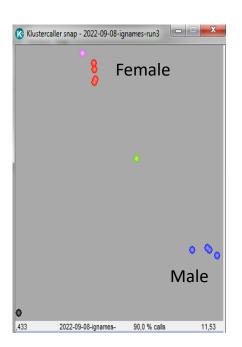

Kabusa

16 QTLs identified for leaf traits in the bi-parental population (GBS)

- GWAS and linkage map based QTLs coincide for some traits
- Novel QTLs detected

QTL for stomatal density (same region as in GWAS)





Introduction of new varieties to extend the diversity panel

From 50 to 200 D. alata accessions in the diversity panel

- Improve GWAS power and GS prediction
- Re-analyze traits that failed in the initial panel
- Confirm previous results and develop diagnostic markers

Validation of SNP: 06.1.19660282 for sex determination in *D. alata*

WORKPLAN FOR NEXT PERIODS

Continue HTTP phenotyping development

- Validation of 3 SOPs on phenotyping methods for competitivity against weeds
- Scientific follow-up of phenotyping activities at CNRA:
 - color and oxidative browning: assistance in data analysis and image processing
 - emergence dynamics: assistance in defining protocols and data analysis
 - Ground cover dynamics: assistance in defining protocols and data analysis
 - drought tolerance: assistance in defining protocols, training in the use of a UAV and image processing

WORKPLAN FOR PERIOD 2

Continue GWAS/QTL analysis

- Emergence dynamic traits
- Ground cover traits
- Phenology, yield, ...
- Develop diagnostic markers

Reproductive biology (in collaboration with CNRA)

- Develop methods for inducing flowering in D. alata
- Genomic and biochemical studies of flowering in *D. alata*

Online platform (Yamhub) for managing yam genomic resources

- Genome browser
- Gene expression atlas: eFP browser
- Molecular markers mining and in silico analyses