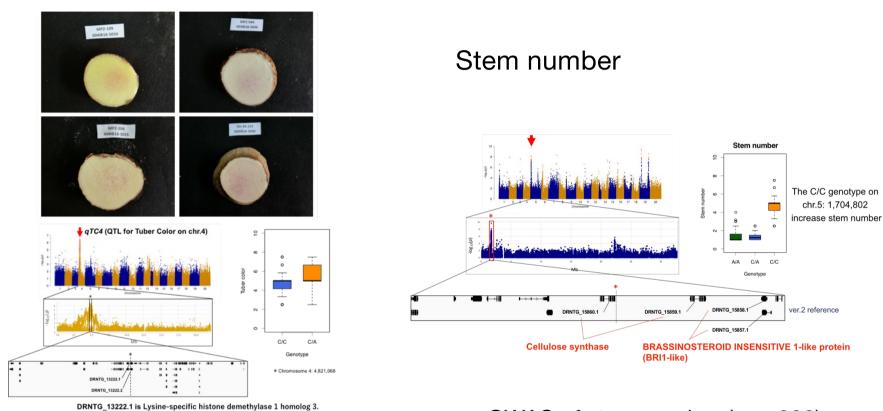
AfricaYam II (2021-2022) Progress Report

IBRC Ryohei Terauchi

17 Sept. 2022

2.1.1.1. Identify QTLs controlling key traits (tuber quality traits, YMV, YAD) using mapping population as well as GWAS panel

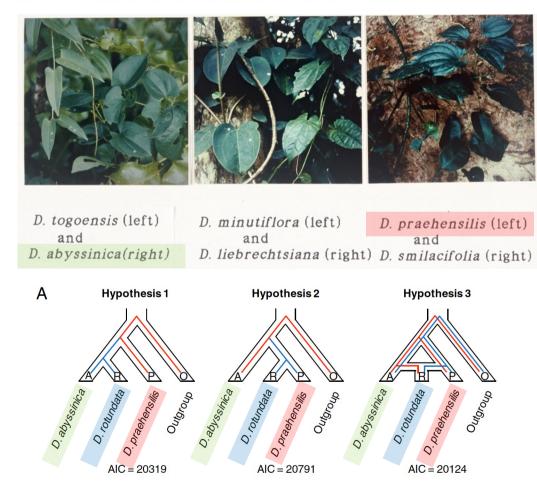

2.1.2.1. Elucidation of molecular mechanisms of flower sex expression in *D. rotundata*

2.1.2.2. Conduct RNA sequencing to complete gene models of Guinea yam and to understand gene regulatory network underlining important traits (flower sex, and plant growth habit, defense against pathogens)

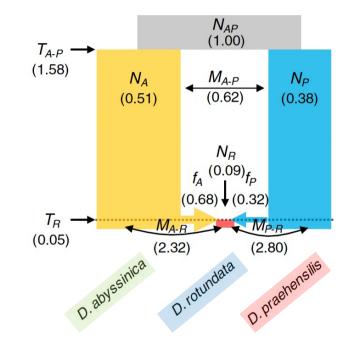
2.1.2.3. Exploration of genomics of Guinea yam wild relatives for identification of useful alleles for crop improvement (Guinea yam Pan-Genome)

2.2.1.1. Develop a genomic prediction pipelines using state of the art machine learning approaches

Tuber color

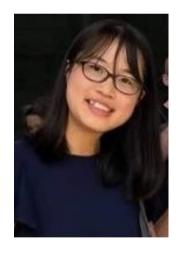


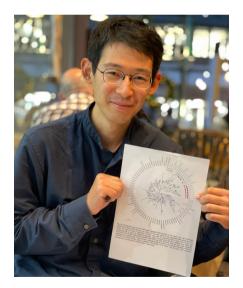
GWAS of stem number (n = 333)


MP2 F1 mapping population (n = 156)

Genome analyses reveal the hybrid origin of the staple crop white Guinea yam (*Dioscorea rotundata*)

Yu Sugihara^a, Kwabena Darkwa^b, Hiroki Yaegashi^c, Satoshi Natsume^c, Motoki Shimizu^c, Akira Abe^c, Akiko Hirabuchi^c, Kazue Ito^c, Kaori Oikawa^c, Muluneh Tamiru-Oli^{c,d}, Atsushi Ohta^a, Ryo Matsumoto^b, Paterne Agre^b, David De Koeyer^{b,e}, Babil Pachakkil^{f,g}, Shinsuke Yamanaka^f, Satoru Muranaka^f, Hiroko Takagi^f, Ben White^h, Robert Asiedu^b, Hideki Innanⁱ, Asrat Asfaw^{b,1}, Patrick Adebola^{b,1}, and Ryohei Terauchi^{a,c,1}




Sugihara et al. 2020 PNAS

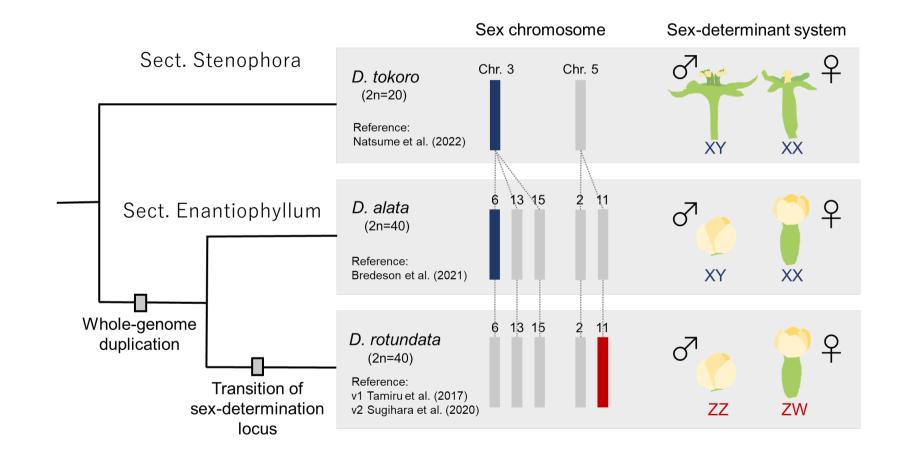
2.1.2.1. Elucidation of molecular mechanisms of flower sex expression in *D. rotundata*

Aoi Kudoh

Yu Sugihara

Dioecy of Dioscorea

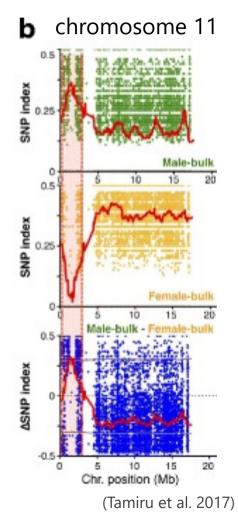
Population Genomics of Yams: Evolution and Domestication of *Dioscorea* Species

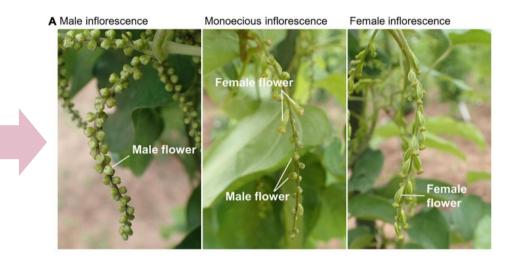

Yu Sugihara, Aoi Kudoh, Muluneh Tamiru Oli, Hiroki Takagi, Satoshi Natsume, Motoki Shimizu, Akira Abe, Robert Asiedu, Asrat Asfaw, Patrick Adebola, and Ryohei Terauchi

https://doi.org/10.1007/13836_2021_94

Table 2 Reported sex-determination systems in Dioscorea

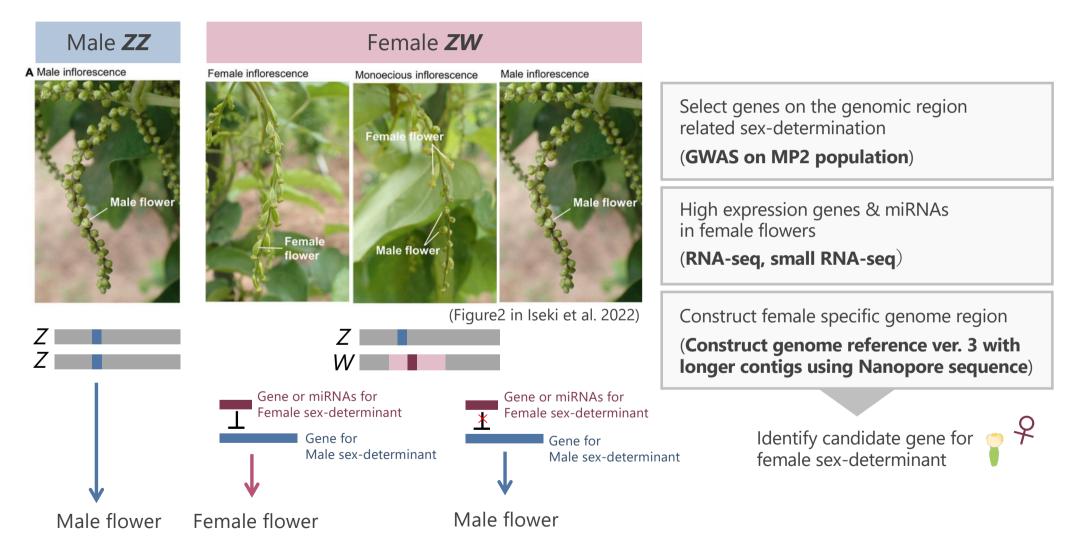
	Sex-determination			
Species system		Methods	Reference	
D. alata L.	XY	QTL detection	Cormier et al. (2019a)	
D. bulbifera L.	XY	Cytological observations	Ramachandran (1962)	
D. deltoidea Wall.	ZW	Cytological observations	Bhat and Bindroo (1980)	
D. discolor	a	Cytological observations	Smith (1937)	
D. fargesii Franch.	a	Cytological observations	Smith (1937)	
D. gracillima Miq.	XY	Cytological observations	Nakajima (1937)	
D. japonica Thunb.	XY	Cytological observations	Nakajima (1942)	
D. macroura Harms.	a	Cytological observations	Smith (1937)	
D. pentaphylla L.	XY	Cytological observations	Ramachandran (1962)	
D. reticulata C. Gay	XO	Cytological observations	Smith (1937)	
D. rotundata	ZW	QTL detection	Tamiru et al. (2017)	
D. sinuata Vell.	XO	Cytological observations	Meurman (1925)	
D. spinosa Roxb.	XY	Cytological observations	Ramachandran (1962)	
D. tokoro Makino	XY	AFLP analysis	Terauchi and Kahl (1999)	
D. tomentosa Koenig XY		Cytological observations	Ramachandran (1962)	


Dioecy in Dioscorea



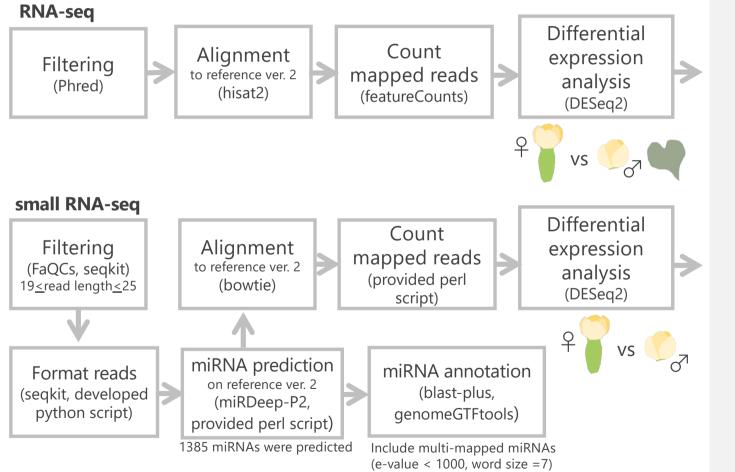
Variable sex expression in *Dioscorea rotundata*

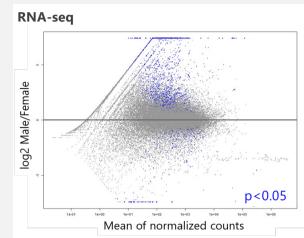
(Photos by JIRCAS)



A Male inflorescence

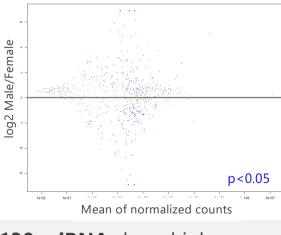
However, Female (*ZW*) shows variability of sex phenotypes. (Iseki et al. 2022)

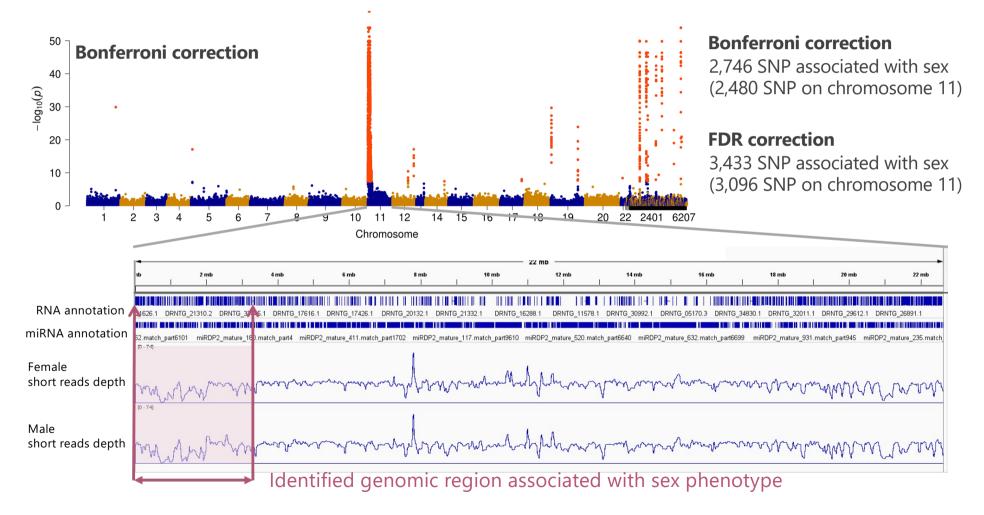

Overview of the hypothesis and the experimental approach



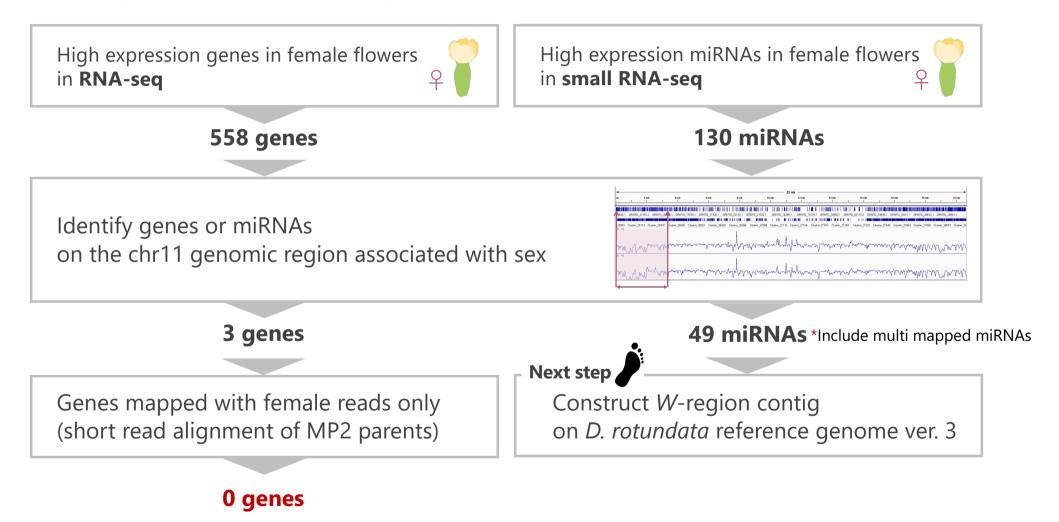
RNA-seq & small RNA-seq for 3 development stages of flowers

RNA-seq	small RNA-seq			
Female flowers Male flowers Stage 1 Stage 2 Stage 1 Stage 2 Stage 3	Female flowersStage 1Stage 2Stage 3	Male flowersStage 1Stage 2Stage 3		
Non-reproductive tissues 11 parts (Ex. leaves, stems, roots, tubers)	Flower samples were collected at IITA field	Male Female		
RNA-seq data from Tamiru et al. 2017 RESEARCH Open Access	Small RNA extraction 1. Extracted RNA (Ambion Plant RNA Isolation Aid) 2. Isolated small RNA	Stage 1 Stage 1		
Genome sequencing of the staple food crop white Guinea yam enables the development of a molecular marker for sex determination	(mirVanaTM miRNA Isolation Kit) Library prep NEBNext Multiple Small RNA Library Prep Set for Illumina	Stage 2 Stage 2		
Muluneh Tamiru ^{1†} , Satoshi Natsume ^{1†} , Hiroki Takagi ^{1†} , Benjamen White ^{2†} , Hiroki Yaegashi ^{1†} , Motoki Shimizu ^{1†} , Kentaro Yoshida ³ , Aiko Uemura ¹ , Kaori Oikawa ¹ , Akira Abe ¹ , Naoya Urasaki ⁴ , Hideo Matsumura ⁵ , Pachakkil Babil ⁶ , Shinsuke Yamanaka ⁷ , Ryo Matsumoto ⁷ , Satoru Muranaka ⁷ , Gezahegn Girma ⁸ , Antonio Lopez-Montes ⁸ , Melaku Gedil ⁸ , Ranjana Bhattacharjee ⁸ , Michael Abberton ⁸ , P. Lava Kumar ⁸ , Ismail Rabbi ⁸ , Mai Tsujimura ⁹ , Toru Terachi ⁹ , Wilfried Haerty ² , Manuel Corpas ² , Sophien Kamoun ¹⁰ , Günter Kahl ^{11*} , Hiroko Takagi ^{7*} , Robert Asiedu ^{8*} and Ryohei Terauchi ^{1,12*}	Sequencing Illumina's NovaSeq	Stage 3 Stage 3 (Photos by JIRCAS)		


RNA-seq & small RNA-seq reveal high expression genes in female flowers


558 genes have higher expression in female flowers

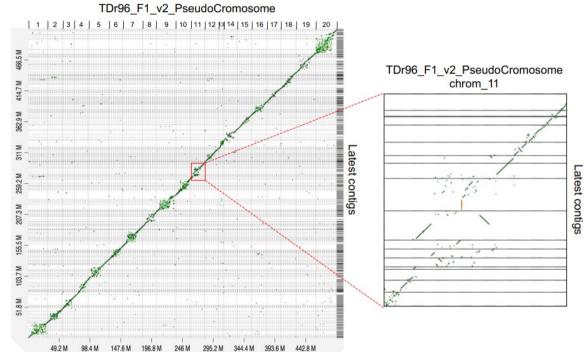
small RNA-seq



130 miRNAs have higher expression in female flowers

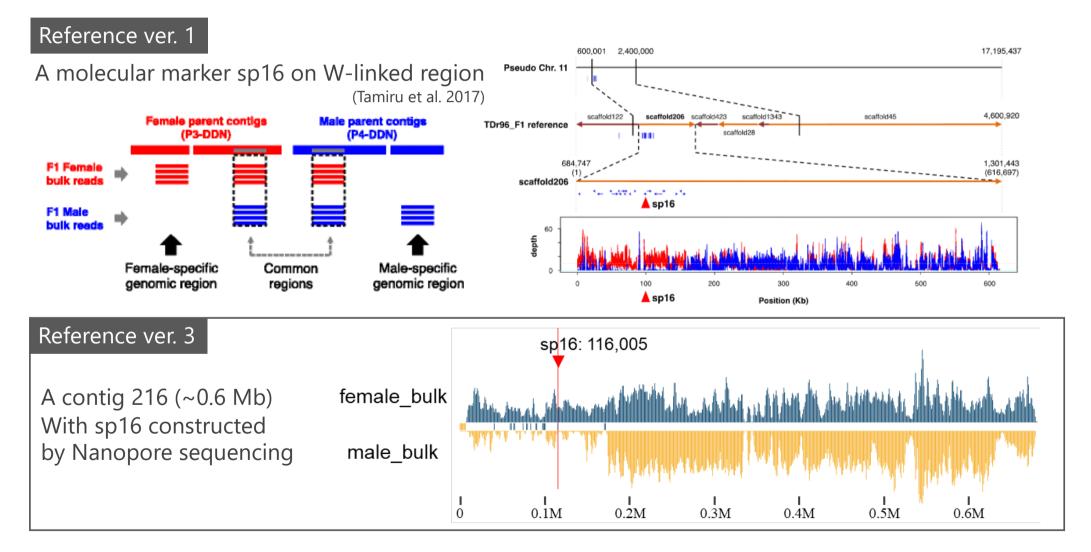
GWAS for sex phonotype in MP2 populations shows the region associated with sex in chromosome 11

Identify the candidate genes for sex-determination

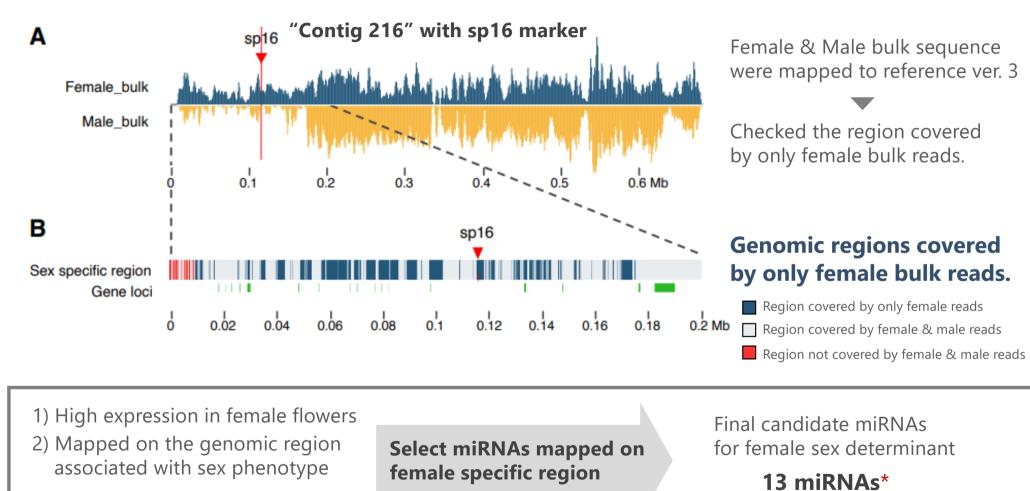

Construction of reference genome ver. 3

Nanopore reads were provided for **ver. 3** assemblies

	PromethION 1 flowcell	MinION 2 flowcell	MinION Q20+Kit 1 flowcell	
	Ver.2 assembly	For this report	For this report	
Read filter setting	>q7, >l5k	>q8, >l5k	>q8, >15k	
Mean read length	9,162	11,818	8,926	
Number of reads	1,766,523	1,090,710	672,249	


The ver. 3 assemblies has longer contigs

Feature	Ver.2	Ver.3
Number of contigs	6,513	1,276
Total contig size (Mbp)	579.41	517.55
Logest contig (Mbp)	2.28	6.38
N50 (Mbp)	0.15	0.98
Total 'N' bp	953	0
Complete BUSCOs (%)	90.1	94.1


The longer contigs in ver. 3 improved the sequences in chromosome 11 (sex chromosome).

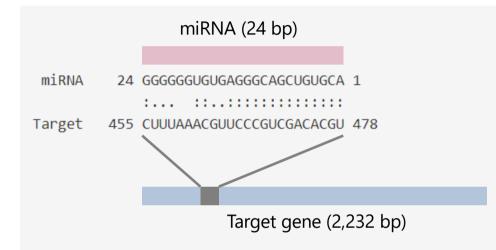
"Contig 216" with W-linked marker was constructed in reference ver. 3

"Contig 216" with sp16 marker has female specific regions

49 miRNAs*

*Include multi mapped miRNAs

Candidate miRNA for female sex determination


A strong candidate miRNA_708

miRNA	DESeq2	DESeq2 Per.Ident with female specific region		fic region	Conservation of	Number of hit target genes		
	log2 male/fen	nale padj	per.ider	nt length	mismatch	n gap-open	precursor and primary sequence on chrom_11	(psRNATarget2: mismatch \leq 2)
miRDP2_mature_1251	-1.47	3.8E-07	95.8	24	1	0	No	2 genes
miRDP2_mature_338	-2.90	4.9E-07	95.7	23	1	0	No	2 genes
miRDP2_mature_82	-2.44	1.7E-06	91.3	23	2	0	No	16 genes
miRDP2_mature_1044	-1.20	4.9E-05	94.7	19	1	0	Yes	24 genes
miRDP2_mature_1231	-2.06	0.00015	95.5	22	1	0	No	3 genes
miRDP2_mature_1291	-0.74	0.00017	95.0	20	1	0	No	0 genes
miRDP2_mature_93	-4.48	0.00028	94.7	19	1	0	No	1 genes
miRDP2_mature_708	-1.82	0.00033	100.0	24	0	0	Yes	1 gene (on chrom_20)
miRDP2_mature_1039	-0.83	0.00045	94.7	19	1	0	No	23 genes
miRDP2_mature_1210	-0.72	0.00142	100.0	16	0	0	No	0 genes
miRDP2_mature_925	-3.36	0.00186	94.7	19	1	0	No	0 genes
miRDP2_mature_138	-1.57	0.00308	95.8	24	1	0	No	6 genes
miRDP2_mature_783	-0.95	0.00682	91.3	23	1	1	No	0 genes

Plant miRNA precursor 3p Nucleotide pairs -18 21 38 1 position Upper stem miRNA/miRNA* Lower duplex stem (Rojas et al. 2020 Fig. 1a)

5p

miRNA_708 targets a gene for polygalacturonase 1 beta-like protein 3

Target gene

PREDICTED: *Dioscorea cayenensis* subsp. *rotundata* polygalacturonase 1 beta-like protein 3 (LOC120251752), mRNA

- Query cover = 84 %
- E value = 0.0
- Per. Ident = 100 %

Polygalacturonase may work for pollen development

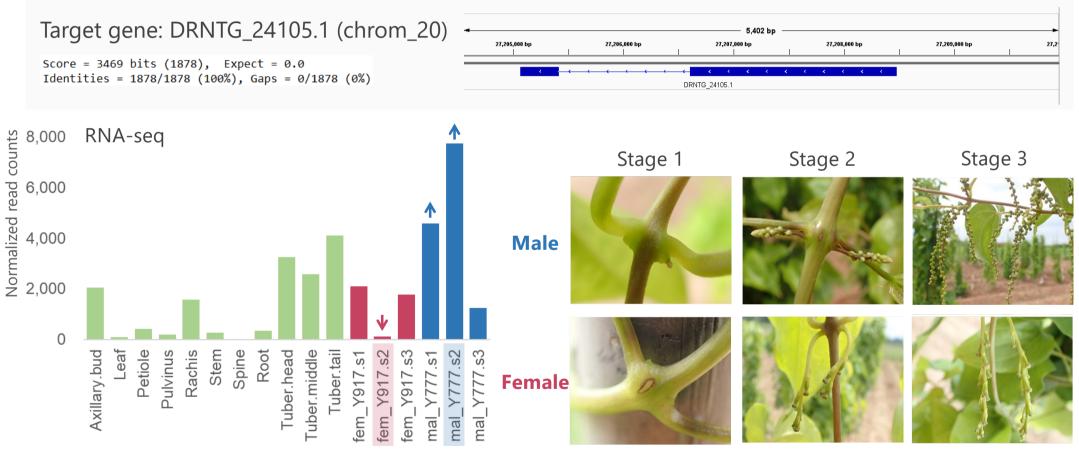
Reported as male flower specific genes in dioecious species, genus of *Salix*.

```
Plant Cell Physiol. 41(1): 16-26 (2000) JSPP © 2000
```

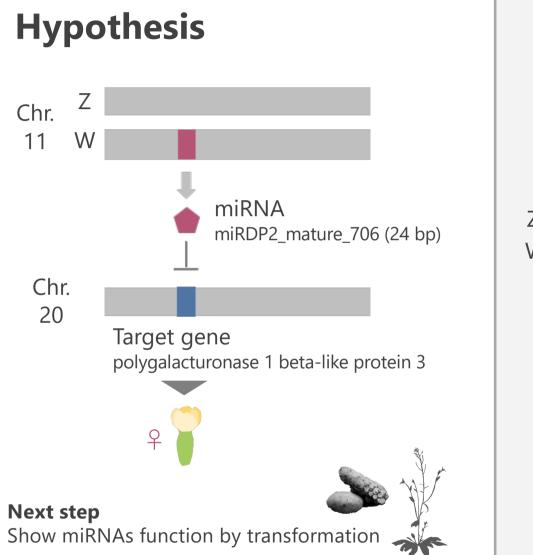
Male Flower-Specific Expression of Genes for Polygalacturonase, Pectin Methylesterase and β -1,3-Glucanase in a Dioecious Willow (*Salix gilgiana* Seemen)

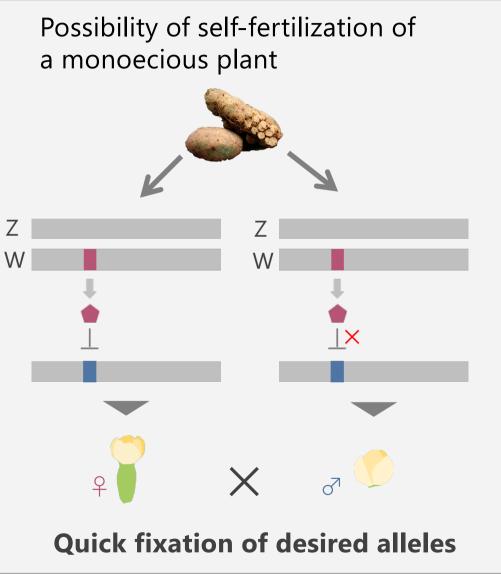
Norihiro Futamura¹, Hitoshi Mori², Hiroshi Kouchi³ and Kenji Shinohara^{1, 4}

- ¹ Molecular and Cell Biology Section, Bio-Resources Technology Division, Forestry and Forest Products Research Institute (FFPRI), Inashiki, Ibaraki, 305-8687 Japan
- ² Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601 Japan
- ³ National Institute of Agrobiological Resources, Tsukuba, Ibaraki, 305-8602 Japan


Male sterile line of cotton mutated in *GhNSP* (*GhNSP* encodes a polygalacturonase protein)

Plant Biotechnology Journal	000 5 0 E
Plant Biotechnology Journal (2022) 20 , pp. 1054–1068	doi: 10.1111/pbi.13785


Degradation of de-esterified pctin/homogalacturonan by the polygalacturonase GhNSP is necessary for pollen exine formation and male fertility in cotton


Yuanlong Wu¹, Xiao Li², Yanlong Li¹, Huanhuan Ma¹, Huabin Chi¹, Yizan Ma¹, Jing Yang³, Sai Xie¹, Rui Zhang¹, Linying Liu¹, Xiaojun Su¹, Rongjie Lv¹, Aamir Hamid Khan¹, Jie Kong³, Xiaoping Guo², Keith Lindsey⁴, Ling Min^{1,*} ⁽¹⁾ and Xianlong Zhang¹

Target gene expressed in the stage 1&2 of male flowers but suppressed expression in the stage 2 of female flowers

(Photos by JIRCAS)

Prospects

- 1. Manipulation of Guinea yam sex to accelerate cross breeding
- 2. Focusing disease resistance: Pan-NLRome of Guinea yam
- 3. Utilizing alleles of Guinea yam wild relatives

Special thanks to all AfricaYam community

Muluneh Tamiru Satoshi Natsume Hiroki Takagi Hiroki Yaegashi Aiko Uemura Kaori Oikawa

Ryo Matsumoto Robert Asiedu Paterne Agre Asrat Asfaw Patrick Adebola

Kohtaro Iseki Shinsuke Yamanaka Hiroko Takagi

Aoi Kudoh Yu Sugihara BILL & MELINDA GATES foundation